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Abstract: An ability to accurately simulate the dynamic behavior of concentrated macromolecular solutions
would be of considerable utility in studies of a wide range of biological systems. With this goal in mind, a
Brownian dynamics (BD) simulation method is reported here that allows systems to be modeled that
comprise in excess of 1000 protein molecules, all of which are treated in atomic detail. Intermolecular
forces are described in the method using an energy function that incorporates electrostatic and hydrophobic
interactions and that is calibrated to reproduce experimental thermodynamic information with a single
adjustable parameter. Using the method, BD simulations have been performed over a wide range of pH
and ionic strengths for three proteins: hen egg white lysozyme (HEWL), chymotrypsinogen, and T4
lysozyme. The simulations reproduce experimental trends in second virial coefficients (B22) and translational
diffusion coefficients, correctly capture changes in B22 values due to single amino acid substitutions, and
reveal a new explanation for the difficulties reported previously in the literature in reproducing B22 values
for protein solutions of very low ionic strength. In addition, a strong correlation is found between a residue’s
probability of being involved in a protein-protein contact in the simulations and its probability of being
involved in an experimental crystal contact. Finally, exploratory simulations of HEWL indicate that the
simulation model also gives a promising description of behavior at very high protein concentrations (∼250
g/L), suggesting that it may provide a suitable computational framework for modeling the complex behavior
exhibited by macromolecules in cellular conditions.

Introduction

All molecules in cellular environments are subject to non-
specific interactions with other molecules that can in principle
profoundly affect their behavior.1,2 One way to investigate the
effects of nonspecific macromolecular interactions is to study
the behavior of concentrated protein solutions: the measured
translational diffusion coefficients,3 second virial coefficients,4

and scattering intensities of protein solutions can all provide
important information regarding transient interactions between
protein molecules. To fully understand such interactions how-
ever it is important to develop a link between the experimental
observables and the protein structure, and this is often best done
through the use of molecular models implemented in computer
simulations. The desired characteristics of models depend of
course on their intended areas of application, but to be useful
in the present context a working molecular model of a protein
must meet the following criteria: (1) it must be sufficiently
sophisticated that it provides an accurate and predictive descrip-
tion of protein-protein interaction thermodynamics, (2) it must
provide an easy route to calculation of intermolecular forces so
that it can be incorporated into dynamic simulations, and (3) it

must be sufficiently rapid to compute that it can be used in
simulations of systems comprising many (hundreds of) protein
molecules. The present work describes a model capable of
fulfilling these three criteria.

Requirement (3) places an immediate and potentially severe
limit on the form of any proposed model. Routinely available
computational resources are sufficiently restricted that it is
currently infeasible to simulate the dynamics of concentrated
protein solutions with all atoms of the solvent treated explicitly;
instead, it is necessary to employ a simplified treatment of the
solvent. Although it is possible to do this and still retain a degree
of explicit solvent modelingsas for example is done in
dissipative particle dynamics5 (DPD)sin the present model, a
completely implicit solvent representation has been chosen: the
solvent’s thermodynamic effects must therefore be implicitly
incorporated into the intermolecular energy functions (see
Methods), and its purely dynamic effects must be accounted
for in the equations of motion, which in the present case is
achieved by use of a Brownian dynamics (BD) simulation
algorithm.6

BD is already widely used in simulations of colloidal systems,
where idealized structural models of the macromolecules (e.g.,
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spheres) are appropriate, and it might be imagined that similar
models could also be used in simulations of concentrated protein
systems; if this was the case, it would be possible to conduct
simulations of extremely large protein systems (containing
thousands of molecules) for very long periods of time (e.g.,
milliseconds). At least two observations suggest however that
accurate modeling of protein solutions requires a higher degree
of structural detail in the protein models. First, it has been shown
that the magnitude of the excluded volume contribution to the
second virial coefficient (B22) can be strongly dependent on the
level of structural detail employed in the protein model: an
atomically detailed model of lysozyme gives a 40% larger
excluded-volume contribution than a spherical model of the
same overall dimensions.7 Second, it has been shown thatB22

values can be sensitive to mutation of asingleamino acid in
the protein and that this can be so even for mutations that cause
no change in the net charge of the protein.8 Since accounting
for the latter observation is essential if the protein model is
intended to meet requirement (1), it is clear that, at the least,
individual amino acids must be resolved and represented in the
protein model. In fact, the present model goes some way beyond
this minimum level of detail and represents proteins in atomic
detail, albeit with the restriction that they are considered to be
rigid bodies.

A number of BD simulation studies have already been
described in which atomically detailed, rigid models of proteins
have been employed (for a review see ref 9). These previous
studies have for the most part been aimed at reproducing the
kinetics of diffusion-limited association reactions,9 and the
simulations have therefore been used to model the mutual
diffusion of only two protein molecules up to the moment at
which they form a reactive encounter complex. It is obviously
not possible to model the behavior of concentrated protein
solutions with only two protein molecules however, and in the
simulations described in the present work therefore the number
of simulated molecules is increased by almost 3 orders of
magnitude to 1000. Some of the algorithmic developments
allowing such simulations to be performed over 10-µs timescales
on single CPUs have been described in previous work conducted
by our group;10 all of our work has been based on the
sophisticated two-molecule BD model originally developed by
Gabdoulline and Wade for modeling protein-protein association
rate constants.11,12Previous applications of our group’s extended
methodology have considered the effects of solute competition
on substrate channeling in an enzyme13 and the effects of
macromolecular crowding on release of protein from the GroEL
chaperonin.14

Although the computational framework that has been estab-
lished makes it technically feasible to simulate the dynamics
of concentrated protein systems, it does not guarantee that the
resulting simulations will be realistic. In order to do this, it is
essential that the energy functions used to model the intermo-
lecular interactions be properly calibrated, and this in turn
requires that good quality experimental data describing the

thermodynamics of protein solutions be available. The latter
need can be conveniently met by measurements of the second
virial coefficient B22 of protein solutions: B22 describes, in
principle, the deviations from ideal behavior due to interactions
between pairs of molecules and can be measured with a number
of experimental techniques, most usually static light scattering
(SLS) measurements.4 Importantly,B22 is sensitive to pH, ionic
strength, and, as noted above, amino acid point mutations,8,15

and it therefore can be used to test computational models of
intermolecular interactions quite extensively. A number of
attempts have been made previously to computeB22 values with
structurally detailed models of proteins, starting with the
pioneering work of the Lenhoff group.7,16-20 As far as we are
aware however all of these previous studies have computedB22

from calculations of the interaction between only two protein
molecules. In contrast, in the present study,B22 is computed
from 1000-molecule BD simulations of protein solutions
performed at concentrations identical to those used in the
experiments; as is discussed in some detail, this ability to
perform simulations that closely mimic the experimental condi-
tions is shown to be important for rationalizing the experimental
B22 data obtained in low salt concentrations.

We report simulations of solutions of three different pro-
teins: hen egg white lysozyme (HEWL), chymotrypsinogen,
and T4 lysozyme. The energy model for each protein has first
been parametrized to reproduceB22 data obtained in one set of
experimental conditions and has then been used to predictB22

in other conditions: the overall good agreement that is obtained
between these predictions and available experimental results
indicates that the parametrized models have utility for describing
the behavior of concentrated protein solutions. This utility is
enhanced by the fact that the same simulations also provide a
host of additional structural and dynamic information. In
particular, the simulations give unusually detailed views of (a)
the way translational and rotational diffusion of molecules is
affected by intermolecular interactions, (b) the kinetics and
thermodynamics of formation of oligomeric clusters, and (c)
the surface residues that drive close interactions between
neighboring proteins. Since a number of these aspects can be
experimentally tested, the parameters of the simulation method
can in the future be further refined, thus making it a viable
framework for developing models of the more complex and
concentrated macromolecular mixtures typically encountered in
biological systems. As a first step in this direction, we also report
simulations of highly concentrated HEWL solutions (up to 254
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Table 1. Physical Properties Assigned to the Simulated Proteins
and Experimental Conditions Used to Parametrize the Simulation
Model’s Energy Function

protein
Mw

(Da)
Dtrans

(Å2/ns)
Drot

(/ns) pH pI
[salt]
(mM)

εLJ

(kcal/mol)

HEWL 14 296 10.96 0.019 69 9.0 10.5 100 0.28
T4 lysozyme 18 551 9.860 0.014 29 7.0 9.6 55 0.22
chymotrypsinogen 25 651 9.101 0.011 38 6.8 8.8 100 0.23
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g/L) and show from comparisons of computed structure factors,
S(Q), that the simulated behavior is in good qualitative agree-
ment with recently reported experimental data.20,21

Methods

Protein Structures. Coordinate files for the three proteins studied
here were downloaded from the Protein Data Bank22 (http://www.rcs-
b.org), with PDB file 1HEL23 being used for HEWL, 1L8724 for T4
lysozyme, and 2CGA25 for chymotrypsinogen. Hydrogens and any
missing side chain atoms were added to each structure using the
molecular modeling program WHATIF;26 the same program was used
to perform the side chain replacements necessary to construct single-
residue mutants of HEWL and T4 lysozyme. As necessary input for
the BD simulations, rotational and translational diffusion coefficients
for the proteins atinfinite dilution (Table 1) were determined by
inputting the protein structures to the hydrodynamics program HY-
DROPRO.27

Brownian Dynamics (BD).The multiple-macromolecule BD method
used in this work extends the previously reported methodology10 with
modifications to ensure complete conservation of forces and an effort
to model hydrophobic interactions between proteins (see below). The
method models proteins as rigid bodies and simulates their translational
and rotational motion with the BD algorithm due to Ermak and
McCammon.6 Interactions between proteins are modeled as a sum of
electrostatic and van der Waals/hydrophobic interactions, with calcula-
tion of the latter terms being accelerated by modeling only non-
hydrogen surface atoms with at least 2 Å2 of solvent-exposed surface
area.

In all simulations reported here, electrostatic interactions between
proteins were modeled with the “effective charge” method developed
by Gabdoulline and Wade.28 In this approach, the electrostatic forces
on protein atoms are determined by the interaction of their effective
charges with the electrostatic potentials generated by other nearby
proteins. The requisite electrostatic potentials are obtained by solving
the linearized Poisson-Boltzmann (PB) equation29 with the finite-
difference program UHBD30 and stored in memory as three-dimensional
grids that translate and rotate during the BD simulations with the protein
from which they are generated. Partial charges and atomic radii for
the PB calculations were taken from the PARSE parameter set;31 partial
charges for the atoms of ionizable residues were obtained by linearly
interpolating between those of the protonated and unprotonated forms
of the residue so that the net charge was equal to that computed from
the residue’s pKa in the revised “null model” described by Antosiewicz
et al.32 For both HEWL and chymotrypsinogen, the net protein charges
obtained with this approach were found to be in good agreement with
those measured experimentally33,34 (Figure S1). In line with the only
modest changes observed in crystallographic structures of HEWL with
pH,35 an identical protein structure was used for simulations in all pH
conditions. The solvent dielectric was set to 78.4 to match the dielectric

of water (at 25°C), and the dielectric within the protein interior was
set to 12.0 as a simple compromise between the lower dielectric of
protein interiors and the higher dielectric of protein exteriors.36

To properly account for the possibility of very long-range electro-
static interactions at low salt concentrations (5 mM), a modification to
the simulation code was made allowing each protein to be assigned
two electrostatic potential grids. For very long-range interactions, a
coarse 200× 200 × 200 potential grid of spacing 1.5 Å was used,
thus allowing interactions between proteins separated by as much as
150 Å to be computed. For accurate representation of electrostatic
interactions at short range (where substantial potential gradients can
be encountered), a more detailed potential grid of spacing 0.5 Å was
computed with dimensions sufficient to encompass a 20 Å shell around
the protein surface.

To provide a simple combined model of van der Waals and
hydrophobic interactions between the carbon and sulfur atoms of
neighboring proteins, a Lennard-Jones potential was used:

where the potential energy,U(r), depends on the distance,r, between
atoms,σLJ is the distance at whichU(r) changes from being favorable
to unfavorable, andεLJ is the well depth of the energy minimum. For
interactions involving all other combinations of atom types, a purely
repulsive potential was used, it being assumed that they make no
significant net contribution to interactions other than those modeled
by the electrostatic term:

This model of atomic interactions, in which only interactions between
hydrophobic atoms are energetically rewarded, was used by us recently
to model ligand-receptor interactions.37 In all simulations,σLJ was set
to 4 Å, and εLJ was treated as a free parameter that was adjusted
separately for each protein so that the computedB22 reproduced the
experimental value in a single chosen condition of pH and salt
concentration (listed in Table 1).

It is obviously a considerable simplification to assume that hydro-
phobic interactions can be described with a Lennard-Jones potential.
One drawback is that it overlooks the fact that the free energy surface
for association of hydrophobic groups has separate contact and solvent-
separated minima; it should be remembered however that the continuum
electrostatic model that we use also introduces the same simplification
into the treatment of charge-charge interactions. A second limitation
is that, as pointed out by a reviewer, it assumes that interactions between
hydrophobic groups are pairwise-additive, even though there is evidence
from molecular dynamics simulations that such interactions may have
many-body characteristics.38-40 In future developments of the present
simulation model it may be possible to use more elegant hydrophobic
models that attempt to incorporate both desolvation barriers and many-
body effects (e.g., ref 41).

In order to provide the best opportunity for properly parametrizing
the van der Waals/hydrophobic interactions, the solution conditions for
each protein were chosen such that electrostatic interactions were at
least partially suppressed by the presence of salt in substantial
concentrations (55-100 mM) and by the pH being at or near the
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protein’s isoelectric point. OnceεLJ was parametrized for each protein
in this single condition, the sameεLJ value was then used for simulations
of the same protein inall other solution conditions, thus testing the
ability of the PB electrostatic model to account directly for the effects
of both pH and salt onB22. It is to be noted that this involves the implicit
assumption that the hydrophobic interactions are independent of salt
in the range of salt concentrations studied. Of course, it is known that
such interactions are actually strengthened by the addition of high
(∼molar) concentrations of salts such as NaCl,42 and this effect is
reproduced in potentials of mean force computed for the association
of hydrophobic molecules by Monte Carlo and/or molecular dynamics
methods.43,44However, since the highest salt concentration investigated
here is 0.5 M, neglecting the salt-dependence of the hydrophobic
interactions is unlikely to introduce significant errors.

Simulation Details. All simulations were performed with 1000
identical protein molecules contained within a cubic simulation box,
with dimensions set such that the simulated protein concentration was
identical to that studied experimentally (1.25-10 g/L); as an example,
for HEWL at 10 g/L, a simulation cube of length 1339 Å was employed.
Protein molecules were initially placed within the box by random
rotation and translation while ensuring at least a 10 Å separation from
neighboring molecules. Brownian motion of the molecules was then
simulated using the Ermak-McCammon BD algorithm6 with a time
step of 2.5 ps; rotational and translational diffusion of all proteins was
assumed to be isotropic, and hydrodynamic interactions between
proteins were neglected. Because of the use of a comparatively large
time step, it is occasionally possible for significant steric clashes to
develop between atoms of neighboring proteins following a single
simulation step. To alleviate any such clashes, an iterative adjustment
of protein positions was performed immediately following each
simulation step until no interacting pair of atoms was separated by less
than 4.5 Å. Details of this adjustment algorithm, which conserves linear
and angular momentum and is similar in spirit (though not in details)
to the SHAKE constraint algorithm45 commonly used in MD simula-
tions, are provided in the Supporting Information. Examination of the
total system energy in preliminary simulations using a range of different
time steps indicated that 2.5 ps was the largest value that could be
safely used.

All simulations were performed under constant volume conditions,
and periodic boundary conditions were applied so that edge effects
were avoided and the systems behaved like bulk solutions.46 For speed,
van der Waals/hydrophobic interactions were computed only between
atoms separated by less than 12 Å; a list of atom pairs meeting this
criterion was constructed every 20 simulation steps. Simulations were
continued for periods of 10, 15, and 10µs for systems modeled at 10
g/L, 5 g/L, and 1.25 g/L, respectively. For HEWL, a series of
simulations was also performed at the much higher protein concentra-
tions of 36, 72, 125, 169, and 254 g/L: because of the increased
computational expense involved in such simulations, their total lengths
were each 1µs, respectively. For subsequent analysis of the dynamic
behavior of the proteins during the simulations, all coordinates necessary
for uniquely specifying the location of each protein molecule (a three-
dimensional translational vector and a 3× 3 rotational matrix for each
molecule) were recorded every 1 ns. Based on examinations of the
total system energy as a function of simulation time, the first 1µs of
each simulation was treated as an equilibration period (100 ns in the
case of the very concentrated HEWL solutions) and was therefore not
used for final computation of any dynamic or structural properties.

Calculation of B22. A convenient route to calculatingB22 directly
from dynamic simulations is via the radial distribution function,g(r).

In order to compute the latter with as much statistical confidence as
possible, a histogram of all protein-protein pairwise distances (defined
as the distance between the proteins’ centers of geometry) was updated
at eVery time step of the simulation. TheB22 was then calculated from
g(r) as described in Velev et al.4 using

wherer is the protein-protein distance,MW is the molecular weight
of the protein, andNA is Avogadro’s number. Although nominally
involving an integration ofg(r) to infinite distance, in practice the
computations ofB22 were subject to finite upper limits when statistical
uncertainties ing(r) at longer values ofr were encountered (owing to
the r2 dr dependence, even tiny deviations ing(r) from 1.0 at long
distances can make significant contributions to a computedB22). For
simulations performed at 5-10 g/L, these uncertainties limit the
precision of the calculatedB22 values to perhaps(1 × 104 mol mL/g2.
For the lower protein concentration of 1.25 g/L, where sampling of
interaction events is less thorough, the precision is somewhat lower
(e.g., (5 × 104 mol mL/g2); however, none of the key conclusions
drawn here regarding the effects of protein concentration on measured
B22 values are affected by this lower precision.

Calculation of Translational Diffusion Coefficients.The effective
translational diffusion coefficientsDtrans of protein molecules were
computed from their center of mass trajectories using the Einstein
formula:46

whereδx is the distance traveled in one of the Cartesian directions
during a time intervalδt, and the brackets indicate an ensemble average.
The choice ofδt is a compromise between the need to have a value
large enough that the effects of anomalous diffusion47 are overcome
but small enough that the statistical uncertainties in the measurements
are reasonable. In the present study, two values ofδt were used. For
calculations aimed at best estimating the averageDtrans of the entire
population of molecules,δt was set to 100 ns; error estimates for these
calculations were obtained from the standard deviation of the 1000
Dtrans values obtained for each individual molecule. For calculations
aimed at investigating the relation between a single molecule’s diffusive
behavior and its interaction with its immediate environment (see
Results), a smallerδt of 1 ns was used to reduce statistical errors.

Calculation of Rotational Diffusion Coefficients. The effective
rotational diffusion coefficients (Drot) of protein molecules were obtained
from the average of the autocorrelation functions of the three unit
vectors describing the rotational orientation of the molecule. The
autocorrelation functions were each fit to a single-exponential decay
function to extract the rotational relaxation time,τrot, from whichDrot

was obtained via the relationshipDrot ) 1/(2τrot). All single-exponential
fits were sufficiently accurate (r2 > 0.99) that higher-exponential fits
were not considered.

Analysis of Oligomeric Clusters.The formation of oligomers of
protein molecules was investigated using geometric criteria in the
following way. Structural snapshots saved every 1 ns were examined
for protein pairs with surface atoms within 6 Å of one another;
oligomeric species were then identified by grouping together all
contacting protein pairs that had a molecule in common. This 6 Å
distance was chosen because it was sufficient to include the bulk of
the first peak in the histogram of closest intermolecular atomic distances
without extending so far into space that cases where noninteracting
proteins happen to drift into contact with each other were included;
any cutoff distance within the range∼5.5 Å to∼9 Å could be chosen

(42) Baldwin, R. L.Biophys. J.1996, 71, 2056.
(43) Ghosh, T.; Kalra, A.; Garde, S.J. Phys. Chem. B.2005, 109, 642.
(44) Thomas, A. S.; Elcock, A. H.J. Am. Chem. Soc.2006, 128, 7796.
(45) Ryckaert, J. P.; Ciccotti, G.; Berendsen, H. J. C.J. Comput. Phys.1977,

23, 327.
(46) Allen, M. P.; Tildesley, D. J.Computer Simulation of Liquids; Clarendon

Press: Oxford, U.K., 1987. (47) Saxton, M. J.Biophys. J.1996, 70, 1250.
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without changing any of the qualitative conclusions drawn here.
Following Carlsson et al.48 the association constant (Ka,i) of an oligomer
of “ i” monomers was expressed in terms of the average concentrations
of oligomers and monomers observed during the production stage of
the simulation using: Ka,i ) [Pi]/([Pi-1] [P1]), where [Pi] is the
concentration of an oligomer of sizei.

Kinetics of Monomer Dissociation. The kinetics of monomer
dissociation from each oligomeric species (defined by the same
geometric criteria outlined above) was computed as follows. First, all
occurrences of the oligomeric species (dimer, trimer, etc.) during the
production stage of the simulation were examined in order to identify
those cases where the oligomer was eventually destroyed by dissociation
of a singlemonomer: all cases where the oligomer decayed by some
other process (e.g., by loss of a dimer, loss of multiple monomers
simultaneously, or addition of a monomer to form a higher-order
oligomer) were ignored in order to simplify interpretation. The lifetimes
of all oligomers satisfying this single-monomer-loss criterion were then
used to construct a time-dependent decay plot for the population of
that type of oligomer. This decay was in all cases found to fit well to
a double-exponential function, the faster component of which was due
to rapid recrossing of the 6 Å threshold distance used to designate
proteins as being in contact, and was not considered to be representative
of a true dissociation event. The time constant of the slower component
(τslow), which was considered to be representative of a genuine
dissociation event, was used to define a unimolecular dissociation rate
constant,koff, through the relationkoff ) 1/τslow. Sampling of dissociation
events was sufficient to allowkoff values to be determined in this way
for dimeric, trimeric, and tetrameric species only; although dissociation
events were also observed for pentamers and certain higher-order
oligomers, sampling was insufficient to produce reasonable rate
estimates.

Surface Atom Contact Probabilities. The propensity of each
surface atom in a protein to be involved in interactions with neighboring
molecules was calculated from the frequency (fi) with which the atom
was found within 6 Å of anatom on a neighboring protein during the
production stage of the simulation. For each protein studied, these
frequencies were converted into effective contact probabilities by
dividing each atom’s frequencyfi by fmax, the maximum contact
frequency found for any of the atoms of the protein. These effective
contact probabilities could then be compared with the probability of
the atom being involved in an experimental crystal contact in the
following way. For each protein studied, a survey of crystal structures
solved in different space groups was conducted. For HEWL, wild-type
structures were taken from the space groups listed in ref 49 (pdb codes
1HEL; 1LYS; 1LZT; 132L); for chymotrypsinogen, structures in the
three space groups were taken from ref 50 (pdb codes 2CGA; 1EX3;
1CHG); for T4 lysozyme, since true wild-type structures are not
available, near-wild-type structures were selected instead: proteins were
included in this list only if they had two or fewer mutations and if the
sites of the mutations themselves were not solvent-exposed, in order
to minimize any influence of the mutations on the surface interactions
(pdb codes 1L87; 175L; 180L; 148L; 1P7S; 1QTH). The atoms involved
in contacts with neighboring molecules in each of these crystal structures
were then identified using the “Crystal Symmetry” module on the
WHATIF webserver (http://swift.cmbi.kun.nl/WIWWWI). Then, for
each surface atom in the particular protein studied, the probability of
it being involved in a crystal contact was obtained by dividing the
number of structures in which it was found to be engaged in a contact
by the total number of structures in the sample.

An alternative way to describe the relative propensity of an atom to
be involved in an intermolecular contact is to convert the contact

frequencies to free energy form using:∆G°contact ) -RT ln(f/fmax),
where fmax is the maximum contact frequency found for any of the
atoms of the protein. Using this definition, the∆G°contactis zero for the
atom most frequently involved in contacts with neighboring proteins
and positive for all other atoms. Since the∆G°contactvalue of an atom
depends not only on its effective energetic interaction with other
molecules but also on its physical accessibility to the atoms of other
proteins, it was of interest to see if these two effects could be separated.
To do this, a 1000-molecule simulation of each protein studied was
conducted in which all electrostatic and hydrophobic interactions were
switched off, and all atoms were in effect treated as hard spheres. These
simulations, which were conducted using exactly the same protocol as
the simulations used to predictB22 values, allow∆G°contact values to
be computed where the only determining factor is the effective
accessibility of the atoms. Subtracting these control∆G° values from
those measured during more “realistic” simulations can in principle
give a more direct measure of how energetic interactions determine an
atom’s involvement in interprotein contacts.

Scattering Data.Following Velev et al.4 the structure factor,S(Q),
was calculated from the simulations viag(r):

with F as the protein concentration,Q the wavevector (nm-1), and the
formally infinite upper limit of integration replaced by the distance at
which it could be safely assumed thatg(r) ) 1.

Results

Structural snapshots taken from a typical BD simulation
(HEWL at a concentration of 10 g/L at pH 9 and in 100 mM
salt) are shown in Figure 1. The progressive mixing of the 1000
molecules that occurs over the time scale of the simulations
can be seen simply by tracking the diffusion of a subpopulation
of the molecules, arbitrarily colored red at the beginning of the

(48) Carlsson, F.; Malmsten, M.; Linse, P.J. Phys. Chem. B2001, 105, 12189.
(49) Vaney, M. C.; Maignan, S.; Rie`s-Kautt, M.; Ducruix, A.Acta Crystallogr.

1996, D52, 505.
(50) Pjura, P. E.; Lenhoff, A. M.; Leonard, S. A.; Gittis, A. G.J. Mol. Biol.

2000, 300, 235.

Figure 1. Snapshots of the 1000-molecule BD simulation of 10 g/L HEWL
at pH 9, 100 mM salt taken at points 1 ns, 1µs, and 10µs into the
simulation. Proteins located in the center of the box during the first snapshot
are arbitrarily colored red for visualization purposes only: in the actual
simulations all molecules were modeled as identical. The expansion in the
upper right demonstrates the atomic level of detail of the simulation model;
positive and negative “effective” charges on individual molecules are colored
in light blue and red, respectively. This figure was prepared with RasMol.51

S(Q) ) 1 + 4πF ∫0

∞
(g(r) - 1)

sin(Qr)
Qr

r2 dr
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simulation. The extent of assimilation achieved by the end of
the 10µs simulation provides a straightforward but important
indication that the simulated time scale is likely to be sufficient
for a relatively thorough sampling of the system’s behavior.

B22 Computations.The energy function used in the simula-
tions has a single adjustable parameter (εLJ) that has been altered
separately for wild-type HEWL, T4 lysozyme, and chymot-
rypsinogen to optimize agreement between the computed and
experimentalB22 values in a single solution condition (Figure
S2). Encouragingly, the optimal values ofεLJ obtained for the
three proteins are all within∼25% of each other (Table 1),
which suggests, in line with previous work,17 that it may
eventually be possible to develop a transferable energetic model
that can routinely be used in a predictive setting. Since one of
the main purposes of the present paper is to reproduceB22 values
however, no attempt was made here to use a single compromise
value ofεLJ in simulations of all three proteins. Instead, what
was investigated was (a) whether the independently parametrized
values for HEWL and chymotrypsinogen would accurately
describeB22 for the wild-type proteins in other conditions of
pH and salt concentration and (b) whether the parametrized
values for HEWL and T4 lysozyme would allow accurate
prediction of experimentally measuredB22 values of site-directed
mutants.

A comparison of computed and experimentalB22 values for
wild-type HEWL and chymotrypsinogen in salt concentrations
ranging from 100 mM to 500 mM and at pH’s from 3 to 9 is
shown in Figure 2A; these data were all obtained from
simulations performed at protein concentrations of 10 g/L. A
linear fit of the data (omitting the two points that represent the
parametrization conditions) gives anR2 value of 0.72 with a
gradient of 1.04. The former is comparable to, though not better
than, the correlation obtained from a previous simpler model
due to Velev et al.4 for the same data points (R2 of 0.81); it
should be noted however that the latter was parametrized via a
global fit and so isa priori expected to perform better over a
wide range of conditions. For chymotrypsinogen, the simulations
successfully capture the nontrivial result4,16 that at pH 3B22 is
lower (more favorable) in 300 mM salt than in 100 mM salt,
but at pH 6.8 it is higher in 300 mM than in 100 mM salt (due
to a salt suppression of favorable short-range electrostatic
interactions). For HEWL, the pH dependence ofB22 is nicely
reproduced at 100 mM but, interestingly, is markedly under-
estimated at 500 mM salt; this suggests the possibility that the
Poisson-Boltzmann electrostatic model implemented here may

overestimate the screening of electrostatic interactions at higher
salt concentrations.

A comparison of computed and experimentalB22 values for
wild-type and site-directed mutant proteins is shown in Figure
2B. Since the mutant proteins were simulated using the exact
same values ofεLJ as those developed for the corresponding
wild-type proteins and since none of these specific simulations
were directly parametrized to match experimental data, the plot
shown in Figure 2B represents abona fidetest of the simulation
model’s predictive abilities; a linear fit of the data gives anR2

value of 0.90 with a gradient of 1.19. For T4 lysozyme, the
simulations qualitatively capture the fact thatB22 increases with
the S44K mutation but decreases with the S44F mutation;8 the
latter mutation is of particular interest because it causes no
change in the protein’s net charge and is therefore beyond
description by more simplified physical models. For HEWL,
the qualitative effects of the D101F mutant studied by the Blanch
and Prausnitz groups15 are also correctly reproduced. This is
notable because the mutation, in principle, introduces two
opposing effects which must be properly balanced for the correct
result to be obtained: on the one hand, the loss of the negative
charge of the aspartate residue might, on purely electrostatic
grounds, be expected to increaseB22 somewhat (since it
increases the net charge on the protein); on the other hand, the
addition of the phenylalanine side chain would be expected to
decreaseB22 (since it introduces a new hydrophobic “patch”15

on the protein surface that could promote interactions with other
molecules). The two effects can be decoupled in simulations
by calculatingB22 for a wild-type model of HEWL in which
the aspartate side chain charges have been set to zero; interest-
ingly, when these simulations are performed, theB22 in this
artificial mutant is found to be more or less identical to the
wild-type value (-4.1 vs-4.0) × 10-4mol mL/g2.

Low Salt Behavior. As noted in the Introduction, several
computational studies have already addressed the modeling of
B22 data with structurally detailed protein models, and a number
studies4,16-18,48 have specifically attempted to reproduce the
experimental data reported by Velev et al.4 There have been
two features common to these previous studies: (1)B22 was
obtained by computing the interaction of only two protein
molecules, and (2) the resulting calculatedB22 values in 5 mM
salt were significantly more positive than the corresponding
experimental values. A key finding that emerges from the
present study is that the first of these features is almost certainly
responsible, at least in part, for the second feature and that

Figure 2. (A) Comparison of computedB22 values (104 × mol mL/g2) with experimental values for wild-type proteins in different conditions of pH and salt
concentration. (B) Comparison for wild-type and single-residue mutants for HEWL and T4 lysozyme.
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higher-order interactions between protein molecules, which are
captured naturally in multimolecule simulations of the kind
reported here, are necessary in order to properly describe the
low-salt experimental data.

The road to this conclusion emerges from a comparison of
the behavior observed in 1000-molecule BD simulations per-
formed at different protein concentrations. Figure 3A shows the
protein-protein radial distribution functions,g(r), obtained from
BD simulations of HEWL at pH 3, 5mM salt, performed with
protein concentrations of 1.25 g/L and 10 g/L; these two
concentrations span the range used by Velev et al.4 to
experimentally determineB22. Also shown in the same figure
is theg(r) calculated from the Debye-Hückel equation for the
interaction of two proteins with the same diameter (38.2 Å)
and net charge (+13.8e) as HEWL (see the solid line in Figure
3A). This latter plot should provide a reasonable approximation
to the long-range interaction expected at infinite dilution of the
protein (i.e., 0 g/L), so the three plots together should allow
the behavior expected at three different protein concentrations
(0, 1.25, and 10 g/L) to be examined. Not surprisingly, the
Debye-Hückel (0 g/L) result predicts that close approach of
the molecules will be strongly disfavored (g(r) ≈ 0) and that
the electrostatic repulsion will be sufficiently long-ranged that
the bulk solution value (g(r) ≈ 1) will only be reached when
the center-center separation distance between the two molecules
is 200-300 Å. Since this is the behavior expected when two
isolated molecules interact, it is also almost certainly the
behavior that will have been present in the previous calculations
of B22 at 5 mM salt reported in the literature. As shown in Figure
3A however, this behavior is very different from that observed
in BD simulations performed at the experimentally studied
protein concentrations. Theg(r)’s obtained from the BD
simulations at 1.25 and 10 g/L protein concentrations indicate
that close approach of the protein molecules is considerably
less repulsive than at 0 g/L, and in fact, a modest but clearpeak
value (g(r) ≈ 1.06) is obtained at a separation of∼135 Å at 10
g/L, with a more minor peak (g(r) ≈ 1.02) being obtained at a

separation of∼185 Å at 1.25 g/L (additional simulations were
performed to demonstrate that the positions and heights of these
peaks were not dependent on the cutoff distance assigned to
electrostatic interactions). These results are important for two
reasons. First, the fact thatg(r) > 1 is obtained indicates the
presence of a weak, effective long-range attraction between the
molecules, despite the fact that all of the direct pairwise
interactions between proteins are purely repulsive at these
distances. Second, the observation of clear differences in the
g(r)’s computed at 1.25 g/L and 10 g/L indicates that the
effective pairwise interaction between HEWL molecules is likely
to change over the range of protein concentrations studied
experimentally by Velev et al. at 5 mM salt.

Before considering the consequences of these results for the
computed and experimentally measuredB22 values, it is worth
examining theg(r)’s obtained with other proteins and/or
conditions. Figure 3B shows the corresponding results obtained
with chymotrypsinogen at pH 3, 5 mM salt. Overall, the
behavior is very similar to that obtained with HEWL in the
same conditions: an effective long-range attraction between
molecules is again obtained at a protein concentration of 10
g/L, and although an attractive (g(r) > 1) peak does not actually
appear at a concentration of 1.25 g/L, it is still apparent that
the effective interaction is significantly less repulsive than that
predicted at 0 g/L from the Debye-Hückel equation (solid line
in Figure 3B). That somewhat weaker effects are obtained with
chymotrypsinogen compared to those obtained with HEWL is
consistent with the former protein’s lower charge density:
although the net charges on the two proteins are essentially
identical at pH 3, chymotrypsinogen is a considerably larger
molecule (46.2 Å52 diameter vs 38.2 Å19). Again, the differences
between theg(r)’s obtained from simulations at 1.25 and 10
g/L indicate that the effective pairwise interaction of chymo-
trypsinogen molecules is likely to be changing over the range
of protein concentrations studied experimentally.

The presence of attractive long-range peaks ing(r)’s from
simulations in which all protein molecules are like-charged,
although perhaps counterintuitive at first sight, is not uncommon
and has already been observed previously in simulations of
highly charged colloidal systems (see for example refs 53 and
54). The effective attraction is essentially a consequence of the
fact that when the protein concentration is comparatively high
and the salt concentration is low, the length scale over which
the repulsive net-charge interaction acts is similar to the average
distance between neighboring protein molecules. Since mol-
ecules are surrounded on all sides by neighbors with which they
are engaged in repulsive interactions, increasing the separation
between any one pair of protein molecules in an attempt to
relieve their electrostatic repulsion only tends to result in
increasing the electrostatic repulsion experienced by both
molecules fromothernearby molecules: as a result, there is a
preferred separation distance that manifests itself as a local
maximum ing(r).

Support for the idea that very long-range electrostatic
interactions cause the differences in behavior at different protein

(51) Sayle, R.; Milner-White, E. J.Trends Biochem. Sci.1995, 20, 374.
(52) Paliwal, A.; Asthagiri, D.; Abras, D.; Lenhoff, A. M.; Paulaitis, M. E.

Biophys. J.2005, 89, 1564.
(53) Vlachy, V.; Marshall, C. H.; Haymet, A. D. J.J. Am. Chem. Soc.1989,

111, 4160.
(54) Giacometti, A.; Gazzillo, D.; Pastore, G.; Das, T. K.Phys. ReV. E: Stat.

Phys., Plasmas, Fluids, Relat. Interdiscip. Top.2005, 71, 031108.

Figure 3. Comparison of radial distribution functions,g(r), obtained from
simulations showing the dependence on protein concentration. (A) HEWL
in 5 mM salt, pH 3 conditions; solid line indicates the prediction of the
Debye-Hückel equation (see text for details). (B) Chymotrypsinogen in 5
mM salt, pH 3. (C) HEWL in 5 mM salt, pH 9. (D) HEWL in 100 mM
salt, pH 3.
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concentrations comes from examining simulations performed
in conditions where the long-range electrostatic interactions are
weakened. One such set of conditions is found at higher pH’s
where the net charge on the protein molecules is reduced. In
Figure 3C theg(r)’s from simulations of HEWL at pH 9, 5
mM salt are shown for 1.25 and 10 g/L. In these conditions
favorable short-range (“hydrophobic”) interactions almost cancel
the repulsive electrostatic interaction of the protein net charges
such thatg(r) close in almost rises above 1; the presence of
significant nonelectrostatic contributions means that for these
conditions the Debye-Hückel equation no longer provides a
useful description ofg(r). More important, however, is the result
that, throughout the entire distance range examined, theg(r)’s
for 1.25 and 10 g/L are very similar to one another. In
corresponding simulations of chymotrypsinogen at pH 6.8, 5mM
salt, similar behavior is obtained: here, the short-range interac-
tion is net favorable, and a very large value ofg(r) results,
indicative of a substantial amount of dimerization; however,
the g(r)’s for 1.25 and 10 g/L are again very similar to one
another (Figure S3A).

A second set of conditions in which long-range electrostatic
interactions are expected to be weakened is at higher salt
concentrations. Figure 3D shows theg(r)’s obtained from pH
3, 100 mM salt simulations of HEWL performed at 1.25 and
10 g/L concentrations. As expected, the twog(r)’s obtained from
the BD simulations are very similar to one another, suggesting
that the effective interaction between pairs of HEWL molecules
in pH 3, 100 mM salt conditions is likely to be independent of
the protein concentration in the range explored experimentally
by Velev et al. The same finding is obtained in all other
simulations performed at 100 mM salt (e.g., Figure S3B): no
significant differences are observed between the effective
interactions of protein molecules at protein concentrations of
1.25 and 10 g/L.

The differences in theg(r) values obtained at different protein
concentrations in 5 mM salt conditions have profound conse-
quences for the estimatedB22 values. The computedB22 values
obtained for HEWL in 5 mM salt are plotted as a function of
pH in Figure 4A for the protein concentrations of 1.25 and 10
g/L. Also plotted in this figure are the experimentalB22 values
obtained by Velev et al. from a linear regression of SLS data
in the range 2 to 10 g/L. TheB22 values obtained from
simulations performed at 1.25 g/L (4) clearly far exceed the
experimental estimates and exhibit an exaggerated dependence
on pH. TheB22 values obtained from simulations performed at
10 g/L (O) also exceed the experimental estimates though less
so and, intriguingly, have a pH dependence that closely matches
that observed experimentally. Consistent with theg(r)’s plotted
in Figure 3A and 3C, the difference between the computedB22

values obtained at 1.25 and 10 g/L is greatest at pH 3 and
smallest at pH 9. A similar picture emerges when the same kind
of comparison is performed for chymotrypsinogen (Figure
4B): the absoluteB22 values and their pH dependence are both
drastically overestimated in the BD simulations performed at
1.25 g/L, and while the computedB22 values at 10 g/L are again
too high, their pH dependence is again in much closer agreement
with experiment.

As is considered in detail in the Discussion, the above results
provide a potentially straightforward explanation for the over-
estimatedB22 values obtained by others in 5 mM salt and also

suggest that estimatingB22 by linearly regressing low-salt
experimental SLS data at protein concentrations in the range
1-10 g/L is likely to be problematic. Fortunately, however, the
simulations performed at moderate salt concentrations (100 mM)
indicate that such problems are likely to be restricted to the
very low salt regime: consistent withg(r)’s plotted earlier, the
computedB22 values in 100 mM salt are very similar for both
1.25 and 10 g/L protein concentrations for HEWL and chy-
motrypsinogen (Figure 4C and 4D).

Translational and Rotational Diffusion. A key advantage
of the present computational model is that in addition to
providing structural data in the form ofg(r)’s, and through them
thermodynamic data in the form ofB22 values, the BD
simulations also naturally yield a large amount of information
on the dynamic behavior of individual protein molecules. In
this regard, it is important to note that although the Ermak-
McCammon algorithm requires that the infinite-dilution values
of the proteins’ translational and rotational diffusion coefficients
are specified prior to simulations being performed, theeffectiVe
diffusion coefficients actually exhibited by the proteins during
the simulations can differ significantly depending on the nature
of their interactions with other molecules. For HEWL at a
concentration of 10 g/L, a number of interesting trends are
obtained when these effective diffusion coefficients are plotted
against the computedB22 values (Figure 5A). The effective
translational diffusion coefficient shows an approximately
parabolic dependence on the computedB22 and is noticeably
decreased from its infinite-dilution value both at negative and
very positive values ofB22. NegativeB22 values (which for
HEWL are obtained at 100-500 mM salt and high pH) reflect
the presence of significant favorable intermolecular interactions,
and the accompanying decrease in translational diffusion
coefficient therefore results from the formation of more slowly
diffusing dimers and higher-order oligomers (see below). Very
positiveB22 values on the other hand (obtained at 5 mM salt
and low pH) result from the presence of long-range repulsive
interactions; the decreased translational diffusion coefficient
therefore suggests that, in addition to having consequences for

Figure 4. Comparison of computed and experimentalB22 values as a
function of pH showing the dependence on protein concentration. Experi-
mental data are taken from Velev et al.4 (A) HEWL in 5 mM salt (units of
B22 are 104 × mol mL/g2). (B) Chymotrypsinogen in 5 mM salt. (C) HEWL
in 100 mM salt. (D) Chymotrypsinogen in 100 mM salt.
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B22, long-range electrostatic interactions may also significantly
restrict diffusive movement.

The dependence of the effective rotational diffusion coef-
ficient on the computedB22 values presents an interesting
counterpoint to that of the translational diffusion coefficients
(Figure 5B). For negativeB22 values, the rotational diffusion
coefficient is decreased from its infinite-dilution value, again
reflecting the slowed diffusion that occurs when monomers
become part of transient oligomeric clusters. For very positive
B22 values, however, no decrease in rotational diffusion coef-
ficient is observed. This result stands in contrast to the significant
decrease in the translational diffusion coefficient that occurs
under the same conditions but can be understood by considering
the fact that at long distances the electrostatic potential generated
by protein molecules becomes increasingly centrosymmetric (see
Figure S4). In the 10 g/L protein concentrations studied here,
each protein molecule is effectively surrounded on all sides by
neighbors; all angular orientations of the molecules are therefore
approximately isoenergetic, with the result that their rotational
motion, in contrast to their translational motion, is largely
unrestricted.

Based on the above results, it would be predicted that the
translational diffusion coefficient of HEWL in very low salt
conditions would decrease as the pH decreases due to the
increased long-range repulsion progressively limiting the mol-
ecules’ opportunities for translational movement. On the other
hand, it would also be predicted that in higher salt conditions
(e.g., 100mM) where long-range repulsions are suppressed, the
translational diffusion coefficient shouldincreaseas the pH
decreases because the increasing net charge would be expected
to disfavor the formation of dimers and higher-order oligomers
(see below). These predictions are in fact qualitatively (but only
qualitatively) borne out in the experimental diffusion coefficient

data reported by Price et al.3 for HEWL in slightly more
concentrated 21 g/L solutions (Figure 5C and 5D).

The relationship between the diffusive behavior of a protein
molecule and its immediate environment can be investigated
further by computing an “instantaneous” diffusion coefficient,
by which we mean the diffusion coefficient of a molecule
computed during a relatively short period of the simulation (e.g.,
1 µs), and correlating this with properties describing the
molecule’s state of association with other molecules. Figure 6A
shows how the instantaneous translational diffusion coefficient
of a “typical” HEWL molecule changes during the course of a
10 µs simulation and compares this with (a) the molecule’s
average interaction energy with all other molecules and (b) its
average oligomerization state at the same point in the simulation.
As might be expected, there is a clear connection, and the time
evolution of the diffusion coefficient of the molecule tracks
closely with its complexation state.

This appears to be a surprisingly general result: when a
similar analysis is conducted on all 1000 molecules inall of
the HEWL systems simulated (at 100 mM salt and higher) and
the results are averaged, a simple linear relationship emerges
between the average oligomerization state of a molecule and
its “instantaneous” translational diffusion coefficient (Figure
6B). Moreover, when this diffusion coefficient is expressed in
ratio form relative to the infinite-dilution value of the diffusion
coefficient (Do), an identicalquantitatiVe dependence on the
average oligomerization state is also obtained with chymo-
trypsinogen (Figure 6B).

Thermodynamics and Kinetics of Oligomerization.With
the exception of the most repulsive solution conditions simulated
(pH 3 and 5 mM salt), transient oligomeric clusters are formed
in all BD simulations, and sampling is sufficient that at 10 g/L
every one of the 1000 molecules becomes involved in a cluster
at least once during the 10µs of simulation (Figure S5). For
HEWL in 100 mM salt, the association constants for oligomers
obtained from the simulations (Figure 7A) are consistent with
experimental estimates which range from 10 M-1 to ∼300 M-1

(see discussions in refs 3 and 48), and there is a small, but
statistically significant, increase in the association constant with
increasing size of oligomer; similar behavior was seen in Monte
Carlo simulations of spherical models of HEWL.48 At pH 6,
we also observe a modest (∼25%) increase in theKa values of
all oligomers when going from 100 mM salt to 500 mM salt
(data not shown); this result is also very similar to that obtained
with the Linse group’s spherical models.48 For chymotrypsino-
gen, the simulated behavior is similar, albeit with an apparently
smaller dependence of the association constant on the oligomer
size (data not shown). The lifetimes of HEWL oligomers in
100 mM salt are shown in Figure 7B, from which it is apparent
that the dissociation kinetics are quite rapid. Interestingly, the
lifetimes of HEWL oligomers are essentially identical at pH 6
and pH 9 (Figure 7B), despite the fact that their thermodynamic
association constants are significantly greater at pH 9 (Figure
7A). The pH independence of the dissociation kinetics is
consistent with oligomerization being driven primarily by pH-
independent van der Waals/hydrophobic interactions (see Meth-
ods). Since the dissociation kinetics are pH-independent, the
pH dependence of the thermodynamic association constant must
result from changes in the association kinetics. Interestingly,
this pH dependence of association kinetics and pH independence

Figure 5. Dependence of translational and rotational diffusion coefficients
on solution conditions. (A) Effective translational diffusion coefficient
(Å2/ns) of HEWL versus computedB22 value plotted for all simulated
conditions; the dotted line indicates the infinite-dilution value (D0) assigned
to the proteins during simulations. (B) Same, but plotting effective rotational
diffusion coefficient (/ns). (C) Comparison of effective translational diffusion
coefficient from 5 mM salt HEWL simulations with experimental data (at
21 g/L) taken from Figure 2A of Price et al.3 (D) Same, but comparing 100
mM salt HEWL simulations; experimental data taken from Figure 2B of
Price et al.3
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of dissociation kinetics are mirrored experimentally in the
differing salt dependences of protein-protein association and
dissociation kinetics.55

Intermolecular Contacts.The atomic detail of the simulation
model allows a direct view of the relative propensities of
different surface atoms to participate in interactions with other
molecules. Following a straightforward conversion of atomic
contact frequencies into free energies (see Methods), a simple
coloring scheme can be used to illustrate preferred sites of
interaction, and these can in principle be used to obtain insights
into the types of interactions (electrostatic or hydrophobic) that
drive the associations. Of course, an additional factor that
determines an atom’s propensity to be involved in interactions
with other proteins is simply its accessibility, but it is possible
to control for this effect by comparing with BD simulations in
which all surface atoms are treated as hard spheres incapable
of engaging in favorable interatomic interactions. Interestingly,
even when accessibility is controlled for, it is not always clear
that there is a simple connection between an atom’s propensity
to be involved in intermolecular contacts and the local hydro-
phobicity or electrostatic potential. There are however cases
where straightforward relationships can be discerned, with the
most blatant example being found in a comparison of wild-
type T4 lysozyme with its S44F mutant: in the case of the wild-
type protein (Figure 8A, left), atoms with high contact propen-
sities are relatively evenly spaced over the entire surface,
whereas, in the mutant (Figure 8A, right), they are highly
concentrated in the region of the Phe 44 side chain (see Figures
S6 and S7 for corresponding views of other systems).

While they can be visually informative, it is difficult to
directly compare the computed interaction propensities with
experiment, although this might be done in future by experi-
mentally mutating those residues predicted to be most respon-
sible for intermolecular contacts. However, one indirect way
of evaluating the predictions is by comparison with the atoms
involved in interprotein contacts in high-resolution crystal
structures of the proteins. The structures of all three proteins(55) Zhou, H. X.Biopolymers2001, 59, 427.

Figure 6. Dependence of diffusional behavior on intermolecular interactions. (A) (O) “Instantaneous” translational diffusion coefficient of a typical HEWL
molecule during the course of a simulation in 100 mM salt at pH 9; (b) average oligomerization state of the same molecule; (4) average interaction energy
(kcal/mol) of the same molecule with all other molecules. (B) (O) Average “instantaneous” translation diffusion coefficient of molecules in all HEWL
simulations performed in 100 mM and 300 mM salt plotted versus their average oligomerization state. (b) Same, but for chymotrypsinogen. (4) Average
interaction energy of molecules in all HEWL simulations plotted versus their average oligomerization state. (2) Same, but for chymotrypsinogen.

Figure 7. Thermodynamics and dissociation kinetics of oligomers in HEWL
systems in 100 mM salt. (A) Association constants plotted versus oligomer
size. (B) Lifetimes plotted versus oligomer size.

Figure 8. (A) Relative contact probabilities plotted in free energy form
(∆G°contact) for surface atoms in wild-type T4 lysozyme (left) and the S44F
mutant (right). (B) Relative probability of an atom being involved in a
contact with another protein in BD simulations plotted against relative
probability of an atom being involved in a crystal contact (see text).
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studied here have been solved in multiple space groups, and a
relatively straightforward comparison can therefore be made by
plotting the probability of an atom being involved in a contact
in the simulations against its probability of being involved in a
crystal contact in one of the experimentally crystallized space
groups. These comparisons are shown in Figure 8B, from which
it can be seen that for all three proteins there is a significant
correlation between the simulated and experimental probabilities.
Interestingly, a similar degree of correlation is also obtained
using contact probabilities obtained from hard-sphere-only
simulations (Figure S8); this suggests that the probability of an
atom being involved in a crystal contact is primarily determined
by its accessibility to contact from other protein molecules. It
should be realized however that this measure of accessibility,
in which the probe is another protein molecule, is not the same
as the conventional solvent accessibility measured with a probe
the size of a water molecule.

Behavior at Very High Protein Concentrations.One final
aspect that was investigated was whether the simulation model
parametrized to fitB22 data for HEWL at a 10 g/L protein
concentration could also capture solution behavior observed at
higher protein concentrations; in fact, simulations were per-
formed at concentrations up to 254 g/L, which, relative to the
parametrization conditions, represents an ambitious 25-fold
increase in the simulated protein density. Although much more
computationally expensive than simulations performed at lower
protein concentrations, simulations could be run for sufficiently
long time periods that reasonably converged estimates ofg(r),
and hence, the structure factor,S(Q), could be obtained forQ
down to∼0.1 nm-1. Figure 9C compares the computedS(Q)
obtained from simulations performed at 169 and 254 g/L with
the corresponding experimental structure factors recently re-
ported by two groups20,21 (Figure 9D and 9E); close-up views
of the simulated systems are shown in Figure 9A and 9B. The
agreement is good, though not perfect. In the experimentalS(Q)
data reported by Stradner et al.,20 a small but discernible peak
is obtained in the 169 g/L plot atQ ≈ 1 nm-1 that disappears

in the 254 g/L plot; the same behavior is also seen in the data
of Liu et al.21 obtained at slightly different protein concentra-
tions. In the simulatedS(Q) data, the peak manifests itself instead
as a shoulder (again atQ ≈ 1 nm-1), but its disappearance at
the higher protein concentration is correctly captured (forS(Q)
plots obtained at somewhat lower protein concentrations, see
Figure S9). Less easy to interpret is the behavior of the major
peak inS(Q) at ∼2 nm-1. In the data of Stradner et al.20 the
amplitude of this peak is concentration-independent; in the data
of Liu et al.21 however, the peak increases significantly in
magnitude as the concentration increases. It is not clear why
there is this discrepancy between the two experimental curves,
but the latter behavior is qualitatively reproduced in theS(Q)
computed from the BD simulations. It is further worth noting
that the study of Liu et al.21 also reports an increase inS(Q) at
very low Q (0.004 nm-1); however in these preliminary
simulations it has not been possible for us to obtain accurate
estimates ofg(r) at the long distances necessary for computing
S(Q) with confidence at very lowQ.

Discussion

The simulation method discussed here is intended to model
the diffusion and association of macromolecules on a length
scale of thousands of angstroms and on a time scale of
microseconds to milliseconds. As such, its ultimate purpose is
to provide a realistic description of macromolecular behavior
in the types of complex mixtures that are encountered physi-
ologically, while retaining a high level of structural detail in
the modeled molecules.57 In this application of the methodology
to single-component protein solutions, one of the central goals
has been to reproduce experimentalB22 data for three model
proteins, with the idea that this should provide an important
indication of the method’s ability to describe weak, nonspecific
macromolecular interactions. Although there are a number of

(56) DeLano, W. L.The PyMOL; User’s Manual; DeLano Scientific; San Carlos,
CA, 2002.

(57) Takahashi, K.; Arjunan, S. N. V.; Tomita, M.FEBS Lett.2005, 579, 1783.

Figure 9. (A) Image of HEWL system simulated at 169 g/L protein concentration. (B) Same, but for 254 g/L. These figures were prepared with PyMol.56

(C) Structure factor,S(Q) computed from BD simulation data plotted versus the wavevectorQ. (D) Same, but showing experimental “effective” structure
factors taken from Stradner et al.20 (E) Same, but showing experimental structure factors taken from Liu et al.21
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possible applications of the methodology, one for the immediate
future is modeling the concentration dependence of protein
rotational diffusion coefficients studied experimentally by
Krushelnitsky, Fedotov, and colleagues;58 a somewhat simplified
BD model developed by these authors has already proven useful
for qualitatively describing aspects of the experimental behav-
ior.59 A second attractive application of the method would be
modeling the early stages of protein crystallization, a process
that has already attracted computer modeling work,60-62 and
for which an interesting connection between crystallization
conditions andB22 values has been reported.63

In assessing the success of the present application, it should
be remembered thatB22 computations are extremely sensitive
to the parameters of energy models.16,17 This can be nicely
illustrated by comparing the parameter sensitivity ofB22 with
the parameter sensitivity of an alternative measure of protein-
protein interaction thermodynamics, the free energy of associa-
tion of two monomers to form a dimer,∆G°assoc. As an example,
in our attempts to parametrize the energy well-depthεLJ for
HEWL, three different values were investigated:εLJ ) 0.26,
0.28, and 0.30 kcal/mol. The computedB22 values obtained with
these parameters were-1 × 10-4, -4 × 10-4, and -11 ×
10-4 mol mL/g2, respectively, all of which values are sufficiently
well spaced that they should be experimentally distinguishable.4

The computed∆G°assoc values obtained with these same
parameters (obtained simply from the relative populations of
dimers and monomers in the simulations) are-2.70, -2.88,
and-3.11 kcal/mol, respectively. Even if such weak binding
constants could be measured experimentally, the small differ-
ences would likely remain unresolvable. In other words,
apparently drastic errors in computedB22 values may actually
correspond to rather small errors in∆G°assocvalues.

This point should in particular be remembered when consid-
ering the apparently disappointing result that differentεLJ

parameters were derived for the three proteins studied here.
Since an attempt to use a single “best-fit”εLJ parameter would
lead to poor predictions ofB22 values for one or more of the
proteins, it is clear that further refinement of the current model
will be required ifB22 values are to be quantitatively reproduced
(see below). However, for investigating less sensitive properties
of a system, it may be that the existing level of correspondence
between theεLJ parameters is already sufficient to arrive at a
single compromise value that might be used in studies of other
protein systems. For example, if we extrapolate the computed
∆Gassocvalues for HEWL to estimate what might be obtained
usingεLJ ) 0.22 kcal/mol, aεLJ value that produces very good
estimates ofB22 for T4 lysozyme and chymotrypsinogen, we
predict a value of∆G°assoc) -2.49 kcal/mol, which differs by
only 0.39 kcal/mol from the value obtained with our “best” value
for HEWL of εLJ (0.28 kcal/mol); it may be therefore that the
former value could be used to compute properties of HEWL
systems (other thanB22) without significantly sacrificing ac-
curacy.

The major advantage of the present method is the fact that it

allows simulations of large numbers of macromolecules to be
performed. This feature has turned out to be critical for
uncovering an important result of the present work, which is
that long-range interactions between many molecules in low
salt conditions can significantly affect their apparent pairwise
interaction. Before considering what this means for previous
attempts to computationally modelB22 values for low-salt
conditions, it is obviously crucial to establish whether this result
has any experimental support. The answer is “yes”. To see this,
it is important to appreciate that the experimental estimates of
B22 for protein solutions are usually obtained as thegradientof
static light scattering (SLS) data plotted as a function of protein
concentrations in the range 1-10 g/L. If the pairwise interactions
of protein molecules are truly independent of protein concentra-
tion in this concentration range, the gradient will also be
constant, and the resulting plot should therefore be linear. The
raw data shown in Figure 1 of Velev et al.4 for HEWL in
moderate salt concentrations (100 and 300 mM) do indeed fit
this scenario, and a linear regression is supported by the fact
that an extrapolation to zero protein concentration leads to an
accurate estimate of HEWL’s molecular weight. The raw data
reported in the same figure for low salt conditions (5 mM) were
also assumed to be linear by Velev et al., but an indication that
this may not have been appropriate for at least the pH 3 data is
that, as noted by the authors, its extrapolation to zero protein
concentration leads to an inaccurate molecular weight estimate.
Perhaps more tellingly, in more recent works reported by the
same group, SLS data obtained in low-salt conditions have been
fitted to quadratic rather than linear functions,19,52andB22 values
have been obtained as the gradients of these functions evaluated
at zero protein concentration; certainly significant curvature is
now apparent in newer data reported for HEWL at low salt by
the same group (see Figure 2 of Paliwal et al.52). Importantly,
both the presence and the sign of curvature in these plots are
consistent with the behavior obtained in the present HEWL
simulations: in 5 mM salt and low pH (Figure 3A), our
computedB22 values are much smaller in magnitude (consistent
with a smaller gradient in SLS data) at high protein concentra-
tion (10 g/L) than at a lower concentration (1.25 g/L).

Velev et al.’s use of a linear regression of SLS data in low
salt conditions means that their reportedB22 values for both
HEWL and chymotrypsinogen are likely to be significantly
underestimated at the lower pH values (since the regression
included high concentration data points for which the apparent
B22 is lower). If so, this will have had unfortunate consequences
for the previous computational studies that have aimed to
reproduce their data, all of which have obtained values that are
significantly more positive than the reported experimental
values. Previously published computations of low-salt behavior
include the simple but effective DLVO model calculations
reported by Velev et al. themselves,4 the calculations of the
Linse group48 which employed a spherical protein model for
HEWL with a charge distribution closely approximating the
distribution found in the crystal structure, and the calculations
of Lund and Jo¨nsson,18 which used a protein model in which
individual residues were modeled as spheres, and which
explicitly modeled the dissolved salt ions. At least some of the
overestimation of the low-saltB22 obtained in these previous
studies might now be explained by the fact that the calculations
considered only apair of interacting molecules and were

(58) Krushelnitsky, A.Phys. Chem. Chem. Phys.2006, 8, 2117.
(59) Ermakova, E.; Krushelnitsky, A. G.; Fedotov, V. D.Mol. Phys.2002, 100,

2849.
(60) Pellegrini, M.; Wukovitz, S. W.; Yeates, T. O.Proteins: Struct., Funct.,

Genet.1997, 28, 515.
(61) Kierzek, A. M.; Zielenkiewicz, P.Biophys. Chem.2001, 91, 1.
(62) Auer, S.; Frenkel, D.J. Phys.: Condens. Matter2002, 14, 7667.
(63) George, A.; Wilson, W. W.Acta Crystallogr., Sect. D1994, 50, 361.
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therefore incapable of capturing the many-body effects that were
probably present in the experimental data (for an interesting
discussion of an additional issue that may have been overlooked
in some of these studies, see Asthagiri et al.19 and Paliwal et
al.52). If this is so, then it may well be that a comparison with
experimental data obtained at (or extrapolated to) lower protein
concentrations would show that the computational models
developed in these previous works are actually more accurate
at low salt than previously thought.

An alternative way to explore this issue would be to attempt
to incorporate many-body effects into two-molecule calculations
using integral equation approaches:53,54,64,65this would enable
the range of validity of these previous models to be extended
to higher protein concentrations. In this context it is interesting
to note that it has recently been shown that integral equation
calculations using the hypernetted chain closure can provide
g(r) estimates that are in good agreement with the results of
Monte Carlo simulations of charged spheres in low-salt condi-
tions similar to those studied here.54 It is also worth noting that
some of these same authors also anticipated,66 on purely
theoretical grounds, the idea that long-range repulsive electro-
static interactions might contribute to an effective favorable
interaction between protein molecules in the experiments of
Velev et al.4

Of course, the present simulation model, by explicitly
modeling the interactions of multiple molecules, provides a more
natural way of exploring the concentration dependence of
protein-protein interactions. That said, it should not be thought
that it overcomes all of the problems encountered in other
studies: our own computedB22 values are clearly far from
perfect in 5 mM salt, and although it is intriguing that the pH
dependence ofB22 obtained at 10 g/L concentration is in rather
good agreement with that obtained by Velev et al., we should
be careful not to overinterpret this result. In fact, in previous
work, one of us has argued that correct reproduction of pH
dependent effects would almost certainly require that modeled
proteins be allowed to assume variable protonation states during
simulations,17 and subsequent work by others has reached a
similar conclusion.67 This may be one reason why the pH
dependence of the effective translational diffusion coefficients
obtained in our simulations is significantly greater than that seen
in the experiments of Price et al.3 at low salt (Figure 5C). An
efficient way of incorporating protonation state changes during
simulations remains to be developed. It is also worth noting
that the mere ability to model multiple molecules does not
guarantee that many-body effects will be properly captured;
instead, as always with simulations, there can be technical issues
that have unforeseen and undesirable consequences. An illustra-
tion of this particular aspect can be found in one of the previous
B22 studies discussed above. In the same study performed by
the Linse group48 that described two-moleculeB22 calculations,
Monte Carlo (MC) simulations of 100 HEWL molecules were
also reported (though not explicitly used to computeB22). Since
these simulations contained multiple molecules and were
performed at the experimental concentrations studied by Velev
et al., they should in principle have captured the same many-

body effects observed in the present simulations. Crucially
however, the Linse group’s MC simulations truncated electro-
static interactions between proteins at 120 Å, which is precisely
the region where the long-range attractive peak ing(r) begins
to appear in our simulations (Figure 3A); if electrostatic
interactions had instead been truncated at a somewhat longer
distance in that study, it is likely that an attractive peak ing(r)
would have been obtained.

In addition to the straightforward modeling of interactions
between many molecules, a final, significant advantage of the
present simulation method is that it yields a rather broad range
of structural and dynamic data, much of which can also be
accessed experimentally. Because of this, the method has the
potential to provide a natural framework for interpreting
experimental data such as translational and rotational diffusion
coefficients for which the derivation of analytical theories is
not straightforward, or for which analytical expressions have
an uncertain range of validity. The comparisons that we have
made between simulated and experimental translational diffusion
coefficients and the structure factors of highly concentrated
HEWL solutions, although not quantitatively accurate, clearly
show a promising qualitative agreement. The ability to simulate
a variety of properties is likely to be of considerable use in the
future since a simultaneous comparison of several different
simulated properties with corresponding experimental data
should allow the parameters, and perhaps the form, of the
energetic description used in the simulation model to be more
tightly defined than is currently possible: it may be for example
that a number of different energy models might be capable of
reproducingB22 data in moderate salt conditions, whereas only
one might be capable of simultaneously capturing additional
data such as translational diffusion coefficients. Clearly, there
is a number of different extant energy models that might be
incorporated into the same basic framework used here;68-75 even
in its current form however the model presented here appears
to have considerable potential for providing predictive rather
than purely phenomenological descriptions of the behavior of
concentrated macromolecular systems.
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